Retrieval of Moisture from Slant-Path Water Vapor Observations of a Hypothetical GPS Network Using a Three-Dimensional Variational Scheme with Anisotropic Background Error
نویسندگان
چکیده
A three-dimensional variational (3DVAR) scheme is developed for retrieving three-dimensional moisture in the atmosphere from slant-path measurements of a hypothetical ground-based global positioning system (GPS) observation network. It is assumed that the observed data are in the form of slant-path water vapor (SWV), which is the integrated water vapor along the slant path between the ground receiver and the GPS satellite. The inclusion of a background in the analysis overcomes the under-determinedness problem. An explicit Gaussian-type spatial filter is used to model the background error covariances that can be anisotropic. As a unique aspect of this study, an anisotropic spatial filter based on flow-dependent background error structures is implemented and tested and the filter coefficients are derived from either true background error field or from the increment of an intermediate analysis that is obtained using an isotropic filter. In the latter case, an iterative procedure is involved. A set of experiments is conducted to test the new scheme with hypothetical GPS observations for a dryline case that occurred during the 2002 International H2O Project (IHOP_2002) field experiment. Results illustrate that this system is robust and can properly recover three-dimensional mesoscale moisture structures from GPS SWV data and surface moisture observations. The analysis captures major features in water vapor associated with the dryline even when an isotropic spatial filter is used. The analysis is further improved significantly by the use of flow-dependent background error covariances modeled by an anisotropic spatial filter. Sensitivity tests show that surface moisture observations are important for the analysis near ground, and more so when flow-dependent background error covariances are not used. Vertical filtering is necessary for obtaining accurate analysis increments. The retrieved moisture field remains reasonably accurate when the surface moisture observations and GPS SWV data contain errors of typical magnitudes. The positive impact of flow-dependent background error covariances increases when the density of ground-based GPS receiver stations decreases.
منابع مشابه
J5.3 3DVAR Retrieval of 3D Moisture Field from Slant-path Water Vapor Observations of a High-resolution Hypothetical GPS Network
*It is very important to accurately characterize the three-dimensional distribution of water vapor in the atmosphere for the understanding and prediction of mesoscale and storm-scale weather, especially with regard to quantitative precipitation forecasting (Emanuel et al. 1995). Skills in these predictions have been improved rather slowly owing to the high spatial and temporal variability of wa...
متن کاملDiagnosis of Three-Dimensional Water Vapor Using a GPS Network
In recent years techniques have been developed to obtain integrated water vapor along slant paths between ground-based Global Positioning System (GPS) receivers and the GPS satellites. Results are presented of an observing system simulation (OSS) to determine whether three-dimensional water vapor fields could be recovered from a high-resolution network (e.g., with 40-km spacing) of GPS receiver...
متن کاملEstimation and Analysis of Precipitable Water Vapor Using GPS Data and Satellite Altimeter
Determination of water vapor in the atmosphere plays an important role in forecasting weather conditions and precipitation studies. For this reason, it is very important to study the tropospheric delay, especially the wet component, which is due to the presence of water vapor in the atmosphere. In this paper, the amount of water vapor was estimated by altimeter satellite radiometer and GPS data...
متن کاملA Review of the Three-dimensional Field Displacement Retrieval Methods Using Interferometric Synthetic Aperture Radar Observations (InSAR) With Emphasis on the Precision of Each of these Methods
Interferometric Synthetic Aperture Radar (InSAR) technology provides a useful tool for quantitatively measuring the deformation of the earth, influenced by natural factors (earthquake, subsidence, and landslide) and human factors (construction of structures, drilling, and the overexploitation of underground water aquifers). In this context, time-series analysis of radar images allows the monito...
متن کاملInvestigations into the Estimation of Tropospheric Delay and Wet Refractivity Using GPS Measurements
The principal error source in the GPS technology is a delay experienced by the GPS signal in propagating through the electrically neutral atmosphere, usually referred to as a tropospheric delay. This delay is normally calculated in the zenith direction, and is referred to as a zenith tropospheric delay. The delay consists of a zenith hydrostatic delay, which can be modeled accurately using surf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005